
Contents

1 Principles of Communication of iRidium Control Panels with Modbus●

2 Setting Up the Connection to the Modbus-compatible Controller●

2.1 Connection to the Controller via Modbus TCP❍

2.2 Connection to the Controller via Modbus RTU or ASCII❍

2.3 Connection to the Controller via Modbus RTU or ASCII through ТСР/IP Gateway❍

3 Switching Between the Local and Internet Connection●

4 Features of Particular Controllers●

4.1 Beckhoff❍

4.2 ОВЕН❍

5 Import of Modbus Commands and Channels●

6 Sending Commands and Reading Data by the Modbus protocol●

6.1 Creating Commands for Controlling Modbus Variables❍

6.2 Creating Channels for Receiving and Displaying the Status of Modbus Variables❍

7 Emulation of Project Work●

8 Launching Projects on Control Panels●

Principles of Communication of iRidium Control Panels with
Modbus
Technology of connecting iRidium App to the controller via Modbus TCP suggests using the client-
server model where iRidium App is the main (Master) device which initiates transactions to the
dependent (Slave) controller. You do not need any additional hardware to work with the controller
via Modbus TCP as iRidium connects to the controller directly.

When connecting iRidium App to the controller via Modbus RTU or ASCII the same model of data
transfer is used but it is required to have a converter from TCP to Modbus RTU/ASCII. You can use
any gateway available on the Automation Market as such converter.

#Connection_to_the_Controller_via_Modbus_RTU_or_ASCII_through_.D0.A2.D0.A1.D0.A0.2FIP_Gateway
#Connection_to_the_Controller_via_Modbus_RTU_or_ASCII_through_.D0.A2.D0.A1.D0.A0.2FIP_Gateway
#Connection_to_the_Controller_via_Modbus_RTU_or_ASCII_through_.D0.A2.D0.A1.D0.A0.2FIP_Gateway
#.D0.9E.D0.92.D0.95.D0.9D
#.D0.9E.D0.92.D0.95.D0.9D
#.D0.9E.D0.92.D0.95.D0.9D
http://wiki2.iridiummobile.net/IRidium_App
http://wiki2.iridiummobile.net/IRidium_App
http://wiki2.iridiummobile.net/File:Modbus_Comm_Scheme.png
http://wiki2.iridiummobile.net/IRidium_App

When using the converter from TCP to Modbus RTU or ASCII it is required to use the corresponding
driver (Modbus TCP to RTU, Modbus TCP to ASCII) in iRidium GUI Editor.

↑ Back

Setting Up the Connection to the Modbus-compatible
Controller
For setting up connection to the Modbus-compatible controller you are required to create a device
defining the way and properties of communication with the Modbus controller in GUI Editor. iRidium
data base for Modbus contain the following driver templates:

Modbus TCP – the driver for direct connection to the controller via Modbus TCP without any●

additional hardware or software. iRidium uses TCP/IP connection for communicating with the
controller.
Modbus RTU and ‘‘‘Modbus ASCII – the drivers for connection to the controller via Modbus●

RTU and ASCII using RS232/RS485 serial networks. When using these protocols the
iRidium application can be launched only on the device physically connected to the
controller by the serial port of data transfer.
Modbus TCP to RTU and Modbus TCP to ASCII – the drivers for connection to the controllers●

which can be operated only via Modbus RTU and Modbus ASCII when the connection to them is
performed through a special format converter (not directly). The converter receives commands
TCP/IP (through the Ethernet port) and sends commands to the controller in the Modbus RTU or
Modbus ASCII formats (see Scheme 2 in the previous section of the present article).

Below you can find examples of setting connection to the controller in iRidium GUI Editor:

Connection to the Controller via Modbus TCP

For connection to the compatible controller via Modbus TCP create a new iRidium project and add
there Modbus TCP driver from iRidium data base. After that it is required to set up properties of

http://wiki2.iridiummobile.net/File:Modbus_Comm_SchemeRTU-ASCII.png

connection to the controller using TCP/IP connection. For that it is necessary to indicate the
controller IP-address (private or public), the TCP port for connection to the controller and
connection properties:

Host an IP-address of the controller
Port a TCP port for connection to the controller (by default - 502)

Update Time
(мс)

frequency of transactions (frequency of sending requests about change of status of
controller variables). When working in the local network the recommended values
are 500...1000 ms (1000...1500 мс – when working via the Internet).

For working with the controller via the Internet indicate the public IP-address of the router the
controller is connected to in the connection settings. Port Forwarding Service is set up for the
router to enable remote control – referring to the local (private) address of the controlled controller
from the Internet.

You can learn the external (public) IP-address of your router with the help of external resources, for
example [1]

Connection to the Controller via Modbus RTU or ASCII

For connection to the compatible controller via Modbus RTU or ASCII without using converters (i.e.
through RS232/RS485 serial networks) create a new iRidium project and add there Modbus RTU
(ASCII) driver from iRidium data base. After that it is required to set up properties of connection to
the Com-port for sending data to the controller. The requirement of direct connection to the
controller Com-port makes it possible to install iRidium projects only on the PC which is physically
connected to the controller through the COM-port:

http://wiki2.iridiummobile.net/File:Modbus_Connection_TCP.png
http://wiki2.iridiummobile.net/Setting_up_Port_Forwarding_Service
http://whatismyipaddress.com/

Port a number of the СОМ-port the controller is connected to

Update Time (мс) frequency of transactions (frequency of sending requests about change of status
of controller variables). The recommended values are 1000...2000 мс

Baud Rate speed of exchanging data with the controller
Data Bits a number of data bits in a frame
Parity parity checking
The stop bit in a frame is always 1

Connection to the Controller via Modbus RTU or ASCII through ТСР/IP
Gateway

Connection to the compatible converter via Modbus RTU (ASCII) using a converter from TCP/IP to
Modbus RTU (ASCII) defines the way of storing Modbus RTU (ASCII) commands in the format
suitable for transferring data via IP and their further converting by the converter to the initial
format. Special derivers - Modbus TCP to RTU and Modbus TCP to ASCII - in iRidium data base
serve for such data converting. In this case communication with the controller is performed
according to the Scheme 2 described in the first section.

Create a new iRidium project and add there Modbus TCP to RTU (TCP to ASCII) driver from iRidium
data base. After that it is required to set up properties of connection to the converter TCP/IP to
Modbus RTU (TCP to ASCII) via IP:

http://wiki2.iridiummobile.net/File:Modbus_Connection_RTU-ASCII.png

Host an IP-address of the converter
Port a TCP port for connection to the converter

Update Time
(мс)

frequency of transactions (frequency of sending requests about change of status of
controller variables). When working in the local network the recommended values
are 500...1000 ms (1000...1500 мс – when working via the Internet).

For working via the Internet indicate the public IP-address of the router the converter TCP/IP to
Modbus RTU (TCP to ASCII) is connected to. Port Forwarding Service is set up for the router to
enable remote control – referring to the local (private) address of the controlled controller from the
Internet.

You can learn the external (public) IP-address of your router with the help of external resources, for
example [2]

↑ Back

Switching Between the Local and Internet Connection
If the control panel should hold the connection with the system when the panel is out of the limits of
the Wi-Fi network of the system, you need to set up the switch between the Internet and the local
network.

The remote mode suggests connection to the system via the Internet. At that the external IP-address
or the domain name of the system to which you need to connect have to be used.

 In iRidium Wi-Fi/3G CANNOT be switched automatically. For switching between the
Internet and the local network you need buttons with special settings. See the settings below.

 To control the system remotely you have to open the system for external access -

http://wiki2.iridiummobile.net/File:Modbus_Connection_TCPtoRTU-ASCII.png
http://wiki2.iridiummobile.net/Setting_up_Port_Forwarding_Service
http://whatismyipaddress.com/
http://wiki2.iridiummobile.net/File:Attention.png
http://wiki2.iridiummobile.net/File:Attention.png

to set up the Port Forwarding Service.

 To secure equipment from unauthorized access we recommend using secure connection
with the remote system (VPN).

Setting up of the switch Wi-Fi/3G in iRidium projects:

1. Open the script editor in iRidium GUI Editor.

2. Download and add into your project the template of the Wi-Fi/3G switch (Add Script from file):
download the template of the Wi-Fi/3G switch

The Wi-Fi/3G switch is performed with the help of the script function SetParameters

Setting up of parameters of the Wi-Fi/3G switch:

function Internal_1() // Function name

{

IR.GetDevice('ModBus TCP').SetParameters({Host: '192.168.0.66', Port: '502',
UpdateTime: '1000'}); // Driver Name + Parameters

}

function External_1()

{

IR.GetDevice('ModBus TCP').SetParameters({Host: '220.115.10.10', Port: '502',
UpdateTime: '1000'});

}

http://wiki2.iridiummobile.net/Setting_up_Port_Forwarding_Service
http://wiki2.iridiummobile.net/File:Attention.png
http://wiki2.iridiummobile.net/File:Scripts_PpenTemplate.png
https://s3.amazonaws.com/iRidiumWiki2.0/Driver_Modbus/Modbus_SetParameters.js
http://wiki2.iridiummobile.net/Drivers_API#SetParameters

Indicate in the command settings:

Function name – the name of the switch function (command). Two functions cannot have the same●

name in a project.
Driver Name – the name of the driver which parameters are changed●

Parameters – the set of the switch parameters which you need to apply to the driver●

Assign commands to buttons:

Select the button which will be responsible for the Wi-Fi/3G switch.1.
Open the properties of the button: Object Properties > Programming
Open Macros Editor of the button for the Press or Release events2.
Select the Script Call command and add it by double-clicking on it3.
Select the name of the function you want to activate in the drop-down list. Create the command.4.

Set up access to the equipment from the Internet:

In order to do that open the equipment ports for remote access.

Download the example of the Wi-Fi/3G switch (project) >>

↑ Back

Features of Particular Controllers
Characteristic features of addressing characteristic for different Modbus-compatible controllers

Beckhoff

Beckhoff CX8090. Modbus/ADS memory card:

Modbus
areas

Modbus
address
(HEX)

Modbus
address
(DEC)

ADS area

http://wiki2.iridiummobile.net/Creating_the_Graphic_Part_of_iRidium_Projects#Macro_Commands_.28Macros_Editor.29
http://wiki2.iridiummobile.net/File:Script_call_internal-external.png
http://wiki2.iridiummobile.net/Setting_up_Port_Forwarding_Service
https://s3.amazonaws.com/iRidiumWiki2.0/Driver_Modbus/Modbus_Internal-External.irpz

Digital
inputs

0x0000 -
0x7FFF 0 - 32767

Index group:
0xF021 - process image of
physical inputs (bit access)

Index
offset:
0x0

0x8000 -
0x80FF

32768 -
33023

Name of the variables in PLC
program:
.mb_Input_Coils

Data type:
ARRAY
[0..255] OF
BOOL

Digital
outputs
(coils)

0x0000 -
0x7FFF 0 - 32767

Index group:
0xF031 - process image of
physical outputs (bit access)

Index
offset:
0x0

0x8000 -
0x80FF

32768 -
33023

Name of the variables in PLC
program:
.mb_Output_Coils

Data type:
ARRAY
[0..255] OF
BOOL

Input
registers

0x0000 -
0x7FFF 0 - 32767

Index group:
0xF020 - process image of
physical inputs

Index
offset:
0x0

0x8000 -
0x80FF

32768 -
33023

Name of the variables in PLC
program:
.mb_Input_Registers

Data type:
ARRAY
[0..255] OF
WORD

Output
registers

0x0000 -
0x2FFF 0 - 12287

Index group:
0xF030 - process image of
physical outputs

Index
offset:
0x0

0x3000 -
0x5FFF

12288 -
24575 0x4020 - PLC memory area 0x0

0x6000 -
0x7FFF

24576 -
32767 0x4040 - PLC data area 0x0

0x8000 -
0x80FF

32768 -
33023

Name of the variables in PLC
program:
.mb_Output_Registers

Data type:
ARRAY
[0..255] OF
WORD

Read/Write Holding Registers.

iPad1 AT %MB0 : WORD; (*адрес 12288*)
iPad2 AT %MB1 : WORD; (*адрес 12289*)

Read/Write Coils. It is required to create the array mb_Output_Coils in global_var. For example:

mb_Output_Coils AT %QB1000 : ARRAY[0..255] OF BOOL;
Create variables:

iPad1 AT %QX1000.0 : BOOL; (*address 32768*)
iPad2 AT %QX1001.0 : BOOL; (*address 32769*)
iPad3 AT %QB1002 : ARRAY[0..5] OF BOOL; (*address 32770-32775*)
iPad3 AT %QB1007 : ARRAY[0..5] OF BOOL; (*address 32775-32780*)

Beckhoff BC9хх0. Memory card of Modbus/ADS:

Calculation of the address Read/Write Holding Registers is performed by formula:

Address = 16384 + 12 - 1 = 16395

16384 – beginning of the area %MB (0x4000-0x47FF)
12 – the variable index (it can be seen in the variable properties)
1 – it take into account counting from zero

↑ Back

ОВЕН

When setting up the controller it is required to indicate a ТСР Port of connection to the controller in
the FIX property. It is 502 by default.

One port has one connection of the ТСР Master (iRidium client).

Numbers of Modbus registers can be seen in addresses with the %QB7.1.5 type:

Address = %QB7.1.5 - 1 = 5 - 1 = 4

The last number minus one is the register address which will be indicated in iRidium.

Alignment of CoDeSys variables when placing them in the Modbus memory:

Variables with sizes 8 bits, 2 bytes and 4 bytes should be located only at particular addresses. The
address of the 4-byte variable is devisable by 4, the address of the 2-byte variable is devisable by 2
and the address of the 1-byte variable is devisable by 1. The addresses can be in any point of the
memory space. I.e. if the first variable has “byte” type it will be located at the address 0х00, the
following - at 0х01 and etc. If the 4-byte variable goes next, it has to be located at the address 0х04
and etc. At that if the 1-byte variable took the place devisable by 4, the next 4-byte variable takes the
next free place devisable by 4. The way of adding variables is random but the alignment puts the
variables on the places which are devisable by their length. As a consequence, there are memory
places which are not taken by anything. They should be considered by the user when the status of
the device is requested. It should be done at the point of adding the variables. .

↑ Back

Import of Modbus Commands and Channels
The Modbus protocol in iRidium enables control of any number of controllers. For that it was
created the universal system of data import which creates the list of commands and feedback
channels for the Modbus driver in the Exel table. This table is saved in the CSV format and can be
imported in iRidium projects as a new Modbus device:

download the template of importing Modbus commands

In the block marked blue, indicate the IP-address, port and frequency of transactions for●

connection to the controller via Modbus TCP. If you use another driver, copy its name from GUI
Editor and indicate it in the first string of the template instead of MODBUS TCP (TCP)
In the block marked green, form the list of commands (Commands) which you need to create in the●

project device tree. Each string is a command with the name and a number of settings (you can see
more information in the section " Sending Commands and Reading Data by the Modbus protocol ")
In the block marked orange, form the list of feedback channels (Feedbacks) which you need to●

create in the project device tree. Each string is a command with the name and a number of settings
(you can see more information in the section " Sending Commands and Reading Data by the
Modbus protocol ")

https://s3.amazonaws.com/iRidiumWiki2.0/Driver_Modbus/Modbus_import.xls
http://wiki2.iridiummobile.net/File:Modbus_import_file.png

When the list of commands and channels is formed save the Exel table in the *.CSV format:

As a result you will have the file ready for importing in iRidium. Go to iRidium GUI Editor, create a
new project and use File > Import. Select the created CSV file and confirm import of data to your
project.

↑ Back

Sending Commands and Reading Data by the Modbus
protocol
According to the standards of the Modbus protocol iRidium refers to the following types of variables
- Type:

Coil Register – one bit, data reading and writing●

Holding Register - 16-bit word, data reading and writing●

Discreet Inputs - one bit, data reading only●

Input Register - 16-bit word, data reading only●

There is a possibility to change the length of the word you want to send to the controller up to 32 bit.
You can use word size setting in the properties of iRidium commands and channels - Word Size (in
the standard Modbus protocol only 16-bit words are used):

Word (16-bit) - 16-bit word corresponding to the standard Modbus protocol●

DWord (32-bit) - 32-bit word consisting of two standard Word registers●

Float (32-bit) - 32-bit word where data is written with the help of ASCII symbols●

As data writing in bytes can be performed in different sequences there is classification of data
writing sequences - Content Type (Low Endian is used by default):

Low Endian – sequence of bytes typical for the standard Modbus protocol where data writing●

http://wiki2.iridiummobile.net/File:Modbus_import_file_CSV.png

begins with the lower byte and ends with the higher byte (b1, b2, b3, b4)
Big Endian - data writing begins with the higher byte and ends with the lower byte (b4, b3, b2,●

b1)
Swapped Low Endian and Swapped Big Endian – sequence of bytes corresponds to the higher●

definitions but bits in each word are written in the reversed order (n,...,1)

To send data to registers iRidium uses Commands и Feedbacks where you are required to indicate
properties of the register you send data to. Commands and channels are created on the output of the
Modbus driver and are sent to the device which properties are indicated in the driver settings.

Sending and receiving data about the state of variables are performed by the drive on the basis of
the list of commands and channels it has. Initiation of command sending is performed by graphic
items the commands are assigned to. Data received from the controller can affect properties of the
graphic items and can be displayed in the text field of the graphic items as values.

Frequency of transaction initiation (requesting data from the controller) is indicated on the stage of
setting up connection.

The following graphic items can be used for controlling Modbus variables and setting up interfaces:

Button Sending fixed values; displaying data received from the controller

Level Sending values from the preset range by the slider; displaying the current value
by the position of the slider

Trigger
Button Switching between two fixed values indicated at the item setting

Up/Down
Button

Incrementing/decrementing the current value by the preset value in the preset
range. The range and the step of increment/decrement are set at the item setting.

Multistate
Button Sending fixed values and receiving data accompanied by animation

Multistate
Level

Sending and receiving values in the preset range where each value or group of
values has its own image

Edit Box Inputting a string of data to be sent to the bus
Joystick Controlling RGB with the help of ColorPicker

↑ Back

Creating Commands for Controlling Modbus Variables

1. Create a command in the project tree and indicate its properties:
(command properties will be described in detail in examples of communication with controllers)

Name a command name (at random)
Device ID an address of the dependent device the command is addressed to (slave id)
Type a type of the register the command refers to
Address an address of the controlled register
Word Size size of the transferred word, usually: Word 16-bit
Content
Type order of bytes in the word, usually: Low Endian

2. Create a graphic item which will initiate command sending
(item properties depend on the command type and control tasks):

Selection of the item type depends on the behavior it should have. Selection of the item feedback
type (Feedback) affects processing and displaying data which were received by the item from the
controller. Main Feedback types used:

Momentary – not to display data received from the channel but change the item state when●

http://wiki2.iridiummobile.net/File:Modbus_command_settings.png
http://wiki2.iridiummobile.net/File:Modbus_item_settings.png

pressing on it (return to the initial state when releasing it).
Channel – to display data received from the channel. Data can be output in the item text field;●

they can affect its state (switch the state depending on the received values) or affect other item
properties.

The rest feedback types have specific purposes and are used less frequently.

3. Drag the command onto the graphic item
Assigning the command to the item is performed by the Drag&Drop method.

When dragging the command the window of selecting general data type, which are sent to the
controller, appears:

Send String – send data strings in the UTF-8 format (it is used when sending fraction values to●

registers holding numbers with floating point, Float 32-bit)
Send Number – send numbers in the decimal format (it is used when sending any whole numbers●

to Coil or Holding registers. The number for sending is fixed and it is indicated when assigning the
command to the graphic item.)
Send Token – send values taken by one of the graphic item properties or a global token to the bus●

(for example you can select sending the current slider position of the Level graphic item. It is used
for regulating values in Holding registers and when working with Trigger Buttons and Up/Down
Buttons)
Send Binary Data – it is not used for Modbus●

4. Input data for sending and indicate the event the data will be sent at

If it is necessary to read data from the same register mark the "Create Feedback Channel" event,
indicate the item property the feedback channels will affect:

http://wiki2.iridiummobile.net/File:Modbus_command_dragging.png

At the command adding indicate not only the value to be sent to the register but also the event the
value will be sent at in the dialog window:

Press - pressing on the item (sending telegrams on pressing)●

Release - releasing the item●

Hold - cyclic data sending when holding the item (additional setting of delay between command●

sending is required)
Move - sending data at each slider move (all values taken by Level); it is used for the Level item●

only.

↑ Back

Creating Channels for Receiving and Displaying the Status of Modbus
Variables

1. Create a feedback channel for receiving the Modbus register status

(the channel can be created manually, generated in Project Device Tree with the help of the
“CreateFeedbacks” button in the right-click menu)

http://wiki2.iridiummobile.net/File:Modbus_Command_dialog.png

2. Drag the feedback channel on the graphic item
(adding of the feedback channel is performed by dragging it from the tree to the graphic item)

Channel – it is required to indicate this feedback type (Feedback) in the item properties if data of●

the channel bound to the item affect the behavior of the item (for example, if data from the bound
channel has to be output in the text field; or when receiving “1” from the channel the item has to
take the second state – change the image).

Indicate if the item property the feedback channel will affect:

In Text – values received from the channel should be output as numbers in the text field●

In Value – values received from the channel should affect the item state (change the slider●

position of Level, switch Button on/off, initiate animation, etc.)
More… – select more complex way of communication between the channel and item properties (for●

example, change item coordinates when the channel value is changed)

↑ Back

http://wiki2.iridiummobile.net/File:Modbus_channel_creating.png
http://wiki2.iridiummobile.net/File:Modbus_channel_dragging.png

Emulation of Project Work
Emulator

- is an iRidium application for Windows which can be launched from GUI Editor for testing your
projects. Emulator can work both with a license (with connection to the equipment) and without it
(when only the project graphic part is functional).

Operation modes for Emulator (see GUI Editor > Tools > Options > Emulator):

Without the license (Demo Mode: on) – no connection with the controlled equipment.
With the license (License Path: [...]) – when the license file is selected, all Emulator
functions work and there is connection with the controlled equipment.

Indicate the path to the license file for Emulator (GUI Editor > Tools > Options > Emulator):

* When Demo Mode is activated Gui Editor won’t show the message about starting without the
connection to the controlled equipment (without a license). Check if there is a license when setting
up your project.

Emulator hot keys

Click F5 to start Emulator.
Click F8 to open the Emulator settings (password: 2007)
Click F4 to open the Emulator log.

http://wiki2.iridiummobile.net/Licensing
http://wiki2.iridiummobile.net/Licensing
http://wiki2.iridiummobile.net/File:Path_to_the_license.png
http://wiki2.iridiummobile.net/IRidium_App#Accessing_iRidium_App_Settings

For fully functional work of iRidium on your PC it is required to get an iRidium license
and activate it for for your PC.
Activation of licenses for iPad/iPhone/Mac/Android based or other devices does NOT lead to
the automatic licensing of the PC with the installed iRidium Environment. A license for your
PC is required for iRidium client on your PC (including Emulator) to work in the fully
functional mode. The license should be purchased separately or you can use free For testing
purposes you can use free licenses).

Logging in Windows

iRidium Log is a window where information about iRidium work, error messages and iRidium
Script logs (IR.Log) are output in the text format.

To open the iRidium log in Windows, click F4.

↑ Back

Launching Projects on Control Panels
Uploading and launching of iRidium projects on control panels are performed with the help of the
iRidium Transfer application installed on your PC. You can also upload your project on the panel
from GUI Editor with the help of Transfer.

Instructions for setting up properties of the iRidium project launch on control panels: Properties●

for Launching iRidium Projects
Instructions for uploading iRidium projects on control panels: iRidium Transfer.●

Instructions for setting up iRidium projects on control panel: iRidium App●

↑ Back

http://wiki2.iridiummobile.net/File:Attention.png
http://www.iridiummobile.net/my-account/buy/
http://wiki2.iridiummobile.net/Licensing#Activation_of_iRidium_Licenses
http://wiki2.iridiummobile.net/HWID,_Serial_number
http://www.iridiummobile.net/my-account/trial/Trial
http://wiki2.iridiummobile.net/File:Log_window.png
http://wiki2.iridiummobile.net/IRidium_Transfer
http://wiki2.iridiummobile.net/General_Settings_of_iRidium_GUI_Editor#Settings_for_Lunching_Projects_in_GUI_Editor
http://wiki2.iridiummobile.net/General_Settings_of_iRidium_GUI_Editor#Settings_for_Lunching_Projects_in_GUI_Editor
http://wiki2.iridiummobile.net/IRidium_Transfer
http://wiki2.iridiummobile.net/IRidium_App

