Contents

- 1 Description
- 2 Creating Drivers

- 3 Editing Drivers

- 4 Sending Data

- 5 Receiving and Processing Data

- 6 Working with UPnP

- 7 Instructions for Creating Drivers

- 8 DOWNLOAD: Example of a project

DOWNLOAD: Example of a project

Description

With iRidiumScript you can:

- Create drivers

- Edit drivers

- Send data to devices

- Receive and process data from devices

Creating Drivers

1. To create drivers with iRidiumScript use the command:
IR.CreateDevice(Device Type, "Device_Name", "IP", Port);

- Device_Type - the protocol type the device works with. At the moment you can use the following
types of easily configured protocols:
- IR.DEVICE_CUSTOM_TCP
- IR.DEVICE_CUSTOM_UDP
- IR.DEVICE_CUSTOM_HTTP_TCP
- Device_Name - the name of a device (set at random)
- IP - the IP-address of the device
- Port - the device port which data are received and sent through

2. When the driver is created it is required to connect it to the device with the command:

IR.GetDevice("Device Name").Connect;

IR.AddListener(IR.EVENT START, 0, function() //Event is activated at the
application launch

{
IR.CreateDevice(IR.DEVICE CUSTOM TCP, "DEVICE", "192.168.0.116", 80); //The

https://s3.amazonaws.com/iRidiumWiki2.0/i2Scripts/JS_Iridium_demo_Drivers.irpz

command for driver creating
IR.GetDevice("DEVICE") .Connect(); //The command for connecting to the
device

)

Editing Drivers

With iRidiumScript you can change any driver properties at any moment. To do that you need to
assign the driver to the variable with the command:

IR.GetDevice("Driver Name");
After that refer to the driver property and set its new value:

driver.Name = "New_Device";

IR.AddListener(IR.EVENT START, 0, function() //Event is activated at the
application launch

{
var driver = IR.GetDevice("DEVICE");//Assign the driver to the variable

driver.Name = "New Device"; //Change the name of the driver

});

Sending Data

With iRidiumScript you can send any required instructions to the device. To do that use the
command:

IR.GetDevice("Device Name").Send([command]);

- Device_Name - the name of the device created in iRidium GUI or iRidiumScript
- command - the instruction send to the device

IR.AddListener (IR.EVENT START, 0, function() //Event is activated at the
application launch

{
IR.CreateDevice(IR.DEVICE CUSTOM TCP, "DEVICE", "192.168.0.116", 80); //The

command for driver creating
IR.GetDevice("DEVICE").Send (['getverion\r\n HTTP 1.1\r\n\r\n'l);//The
command sends instruction to the device('getverion\r\n HTTP 1.1\r\n\r\n')

});

Receiving and Processing Data
With iRidiumScript you can receive data from the device with the help of Listener:

IR.AddListener(Information_Display Type, Device_ Name, function(text)

- Information_Display Type - the way the received information is displayed (text format -
IR.EVENT RECEIVE TEXT or bit format - IRREVENT RECEIVE DATA)
- Device_Name - the name of a device created in iRidium GUI or with iRidiumScript

DEVICE = IR.GetDevice("Global") //Indicate the name of the device
IR.AddListener (IR.EVENT RECEIVE TEXT, DEVICE, function(text) //Event is
activated when receiving data from the device

{
IR.Log(text) //Output the text in the log

});

Working with UPnP

UPnP (Universal Plug and Play) is architecture of multirange connections between personal
computers and smart devices for example in the home local network. UPnP is built on the basis of
Internet standards and technologies such as TCP/IP, HTTP and XML. It provides automatic
connection of smart devices to each other and their concurrent work in network environment. These
features ensure easy configure of the network (for example, the local network) for more users.

In iRidiumScript you can find, set and control all devices which support UPnP. If you work with
UPnP you don't need to know the IP-address and port of your device. The system can find all devices
and display them itself.

To create UPnP drivers use the command:
upnpControl = IR.CreateDevice(IR.DEVICE_UPNP_CONTROL, "MyUPnP");

- MyUPnP - the name of a UPnP driver
- IR.DEVICE_UPNP_CONTROL - Indicate the UPnP type
- upnpControl - the variable which the driver identifier is assigned to

Then the driver has to be activated with the command:
upnpControl.Connect();

When launching the Client the driver sends requests to the network about having UPnP devices in it.
To manipulate the device found in the network use Listener:

IR.AddListener(IR.EVENT DEVICE_FOUND, 0, FoundDevice);

- IR.EVENT_DEVICE_FOUND - Event is activated in the case of identifying devices which support
UPnP
- FoundDevice - the function is launched when activating the IR. EVENT DEVICE FOUND event

Instructions for Creating Drivers

To create drivers use the object-oriented paradigm. There are several stages for creating drivers:

- 1 Stage Creating the Main Class

At this stage you are required to create the main class which you will use for creation of driver
instances. In iRidiumScript the main class is created as the function:

var GlobalCache = function() //Activation of the main class
{

//The class body
}

- 2 Stage Connection of class instances to the driver in GUI Editor

For each driver you are going to work with you are required to create a base driver in the Device
Tree window of GUI Editor for correct operation. After that you are required to describe the
connection of each driver instance to the base device (driver) from Device Tree of GUI Editor.

Base drivers are divided by names. So when activating class instances you are required to assign
each class instance to its own base driver from Device Tree by its name. In the main class it can be
done as follows:

this.DEVICE = IR.GetDevice(this.DriverName);

- this.DEVICE - the variable where the driver identifier received by the indicated name is stored
- this.DriverName - the variable where the base driver name indicated by the user is stored

var GlobalCache = function() //Activation of the main class

{
this.DriverName; //The driver name set by the user
this.DEVICE; //Indication to the base driver in Device Tree

function initalization()//Method for activation of the class instance
{
this.DEVICE = IR.GetDevice(this.DriverName); //Defining the indication to
the base driver by its name

}

this.Init = initalization; // Defining a method for activation of the
driver instance

}

- 3 Stage Checking the device network status (Online/Offline)

This checking is required so you could see if the device started running or not (if the session of
connection to the controlled equipment is started). In the initial state - that.Online = false and that
means that the device is not in the network but after that the device is launched and the status
that.Online changes to that.Online = true. If the device is not in the network (there is no connection)

you can not send commands to the device.

IR.AddListener (IR.EVENT ONLINE, that.DEVICE, function(text)

{
IR.Log(that.DriverName+" DEVICE is Online");
that.OnLine = true;

}, that);

IR.AddListener (IR.EVENT OFFLINE, that.DEVICE, function(text)

{
IR.Log(that.DriverName+" DEVICE is Offline");
that.OnLine = false;

}, that);

)

- 4 Stage Sending commands with the help of scripts

With iRidiumScript you can send commands, for example:

function SendGetDevice()

{

Device.Send(['getdevices',13]); //Send the "getdevices" command

I
this.sendgetdevice = SendGetDevice

function SendGetVersion()

{

Device.Send(['getversion',13]); //Send the "getversion" command

};

this.sendgetversion = SendGetVersion

- 5 Stage Data output in the log

In iRidiumScript you can output both text and binary data in the log:

IR.AddListener (IR.EVENT RECEIVE TEXT,0.function(text) //Processing text data
{

IR.Log(text)

3

IR.AddListener (IR.EVENT RECEIVE DATA,O.function(text) //Processing binary
data

{
IR.Log(text)

});

- 6 Stage Parser and activation of parser methods (handler of incoming data)

In iRidiumScript you can parse data both through search (text.indexOf) and regular expressions
(text.search)

"DEVICE";
"version";

this.IsDeviceRegex
this.IsVersionRegex

IR.AddListener(IR.EVENT RECEIVE TEXT, this.DEVICE, function(text)
{

IR.Log("responce text = "+text);
that.IsDevice = text.indexOf(that.IsDeviceRegex.tolLowerCase());
that.IsVersion = text.indexOf(that.IsVersionRegex);

if (that.IsDevice '= -1)

{
that.getdevices(text);

} else if (that.IsVersion != -1)
{

that.getversion(text);

}
});

- 7 Stage Referring to functions after the parsing

To refer to functions you are required:

this.ResponceGetDevices;
function GetDevices(text)

{

var EndPacketRegex = 'endlistdevices';

var EndPacket = text.indexOf(EndPacketRegex);
var Responce;

Responce = text.slice(0,EndPacket);
that.ResponceGetDevices = Responce;

}

this.getdevices = GetDevices;

this.ResponceGetVersion;

function GetVersion(text) //The function for processing the "getversion"
channel
{

var EndPacket = text.length;

var Module;

var Version;

Module = text.slice(8,9);

Version = text.slice(10,EndPacket-1);
that.ResponceGetVersion = "Module: "+Module;
that.ResponceGetVersion = "Version: "+Version;

}

this.getversion = GetVersion;

- 8 Stage Creating driver instances

var [Device Name] = new GlobalCache();

[Device Name].DriverName = "Driver Name(indicated in DEVICE TREE)";
[Device Name].Init();

var GCO6 = new GlobalCache();

GCO6.DriverName = "gc-2";

GCO6.Init();

- 9 Stage Binding methods and properties to GUI items

IR.AddListener(IR.EVENT ITEM PRESS,IR.GetItem("Page 1").GetItem("Item
1"), function()

{

GCO6.sendgetversion()

});

DOWNLOAD: Example of a project

https://s3.amazonaws.com/iRidiumWiki2.0/i2Scripts/JS_Iridium_demo_Drivers.irpz

