
Contents

1 Preparations for Driver Creating●

1.1 Selection of Equipment❍

1.2 Search for Documentation❍

1.3 Analysis of the Documentation❍

2 Driver Creation●

2.1 Driver Creation in GUI Editor❍

2.2 Driver Structure❍

2.3 Writing the Main Class❍

2.4 Section of Variables❍

2.5 Initalization of the Device❍

2.6 Online / Offline Device Events❍

2.7 Listener of Feedback❍

2.8 Parser (Handler of Incoming Data)❍

2.9 Listener of the Activated Channel❍

2.10 Functions of Sending Commands to Devices❍

2.11 Public Functions of the Driver❍

2.12 Creation of Driver Instances❍

2.13 Adding the Driver in Device Base❍

3 API for Working with Drivers●

4 Download the example of the project●

This section describes the creation process of a freely customizable script driver in iRidium GUI
Editor through the example of the driver for a Marantz SR7007 device.

 Script driver
it is a driver created on the basis of the native AV & Custom Systems driver with the help of
iRidium DDK. Scripts enable receiving data and communication with ANY equipment. Driver
scripts can be created by the user for operation with any control protocol.

Creation of a driver consists of several stages:

Preparations for Driver Creating
Selection of Equipment

At the first stage you are required to select a controlled device. It can be target controlled
equipment or format converter. As an example the Marantz SR7007 device is selected. It supports
operation by the TCP protocol.

iRidium controlled devices can receive control commands using one of the following protocols:

TCP●

UDP●

RS232●

HTTP●

#Online_.2F_Offline_Device_Events
#Online_.2F_Offline_Device_Events
#Online_.2F_Offline_Device_Events
#Parser_.28Handler_of_Incoming_Data.29
#Parser_.28Handler_of_Incoming_Data.29
#Parser_.28Handler_of_Incoming_Data.29
http://wiki2.iridiummobile.net/File:Driver_script.png
http://ru.wikipedia.org/wiki/TCP


Search for Documentation

In order to control equipment and receive data from it you are required to find documentation (of
API or DDK equipment). Usually you can find the documentation on the web site of the manufacturer
but not all manufacturers publish it on open access. If the documentation cannot be found the
creation of the driver is not possible.

For the Marantz SR7007 device the documentation was found on the web site of the manufacturer.
You can download it.

Analysis of the Documentation

When the documentation is received you are required to analyze it and define:

Control commands for your equipment●

Syntax used by the control commands●

Properties of commands●

Data you can receive from the equipment●

Syntax for receiving data●

After analyzing the documentation for Marantz SR7007 the following conclusions were drawn:

Syntax: Commands are formed from two parts (1 part - command, 2 part - property)

Example: Let us examine the "POWER ON/STANDBY change" command. Its ASCII string
looks as PWON<CR>.

The first part PW is the command itself (control of the device power);●

The second part ON is the property of the command (power feed to the device);●

<CR> is a nonprintable character marking the string end (0x0D in the HEX format) .●

http://us.marantz.com/us/Products/Pages/ProductDetails.aspx?CatId=AVReceivers&SubCatId=0&ProductId=SR7007
http://us.marantz.com/DocumentMaster/US/Marantz_AV_SR_NR_PROTOCOL_V02.xls


This principle is used for forming all commands for the Marantz SR7007 device.

Driver Creation
Driver Creation in GUI Editor

All ready drivers are stored in Device Base (the global data base). iRidium GUI Editor enables
you to create a driver both in Device Base – without assignment to a particular project (the driver
can be added in any project) and in Project Device Panel – the device base of the particular
project. Creation of a driver in Project Device Panel enables its launch in the editing mode
(emulation and debugging) directly in the project. In order to add such a driver in Device Base you
have to do it manually.

In the present example we create the driver in Project Device Panel (with its assignment to the
project) to have the possibility of quick editing.

After reading the documentation you can proceed to the driver creation in Project Device Panel.
iRidium GUI Editor has templates of freely customizable drivers which differ by protocols used for
data transfer:

Custom Driver TCP●

Custom Driver UDP●

Custom Driver HTTP●

Custom Driver RS232●

http://wiki2.iridiummobile.net/File:SDK_3.png


For creation of a new device in the project tree you are required to perform the following actions:

Create a new project in iRidium GUI Editor●

Go to the Project Device Panel tab●

Push the Add button or click the right mouse button in the free space of Project Device Panel.●

Go to the Add Driver > Custom Device section●

The Marantz SR7007 device can be controlled by the TCP protocol so select Custom Driver●

TCP

The driver appeared in Project Device Panel. The following actions:

Select the created driver●

Select the name of the device in the Name field in the Channel Properties. In our example it is●

Marantz SR7007 (it is set at random).
Indicate Host – an IP-address of the device and Port – a ТСР port the commands to the device are●

sent through in the Local Connection (connection in the local network) section. Indicate port 23
for Marantz SR7007.

http://wiki2.iridiummobile.net/File:SDK_1.png
http://wiki2.iridiummobile.net/IRidium_GUI_Editor


Each device has drop-down lists:

Tokens - global variables with main properties of the controlled equipment. These properties can●

be read only (they cannot be changed):
Online – a state of connection to the controlled system (Online/Offline = 1/0)❍

Status – a status of connection to the system (Offline/Connect/Online/Disconnect = 0...3)❍

Host – a domain name of the remote system❍

HostPort – a port of the remote system iRidium App connects to❍

IP – a domain name of the module the App connects to❍

HostIP – an IP-address of the remote system the App is connected to❍

Port – a local client port the connection to the remote device is established through❍

Commands - control commands which can be sent to the controlled system●

Feedback - variables for receiving and storing data received from the controlled system.●

Driver Structure

For driver creation use the object-oriented paradigm.

The object-oriented paradigm enables you use one and the same driver for several similar devices at
the same time by creating instances.

On the web site javascript.ru you can find detailed instructions about working with objects in Java
Script.

http://wiki2.iridiummobile.net/File:SDK_2.png
http://wiki2.iridiummobile.net/IRidium_App
http://en.wikipedia.org/wiki/Object-oriented_programming
http://javascript.ru/tutorial/object


A driver consists of several parts:

Main class of the device●

Section of variables❍

Initalization of the device❍

Event of turning the device on❍

Event of turning the device off❍

Listener of the feedback and data parser❍

Listener of the activated channel❍

Functions of command sending to the device❍

Public functions of the driver❍

Creation of an instance●

Writing the Main Class

Open the Scripts window in iRidium GUI Editor.

Create a new script module with the name of your device. In our example it is Marantz SR7007.

The name of the script module as the name of the device in Project Device Panel has to be unique.
The uniqueness of the name is very important as there can be very many devices and it is
recommended to set the name of the module corresponding to the name of the name of the device to
avoid the conflict of names.

Let us create the main class you will use later for creating driver instances. In iRidiumScript the

http://wiki2.iridiummobile.net/IRidium_GUI_Editor
http://wiki2.iridiummobile.net/File:SDK_4.png


main class is created as a function:

var Marantz_sr7007_main = function(DeviceName) // Class of drivers for the
Marantz SR7007 device
{
  //body of the class
};

Marantz_sr7007_main – the name means that the device is Marantz, the model is sr7007, the
class is main.

Section of Variables

Next you are required to indicate the following variables in the class body:

this.DriverName – the name of the device you created in Project Device Panel●

this.device – the link to the device created in Project Device Panel●

this.Online – the device status. If it is on - Online = True, if not - Online = false●

The DeviceName variable is sent to the function – it will take the device name when creating an
instance.

By default It is required to set the ‘false’ flag to the this.Online variable. It means that the device is
off.

var Marantz_sr7007_main = function(DeviceName) // Class of drivers for the
Marantz SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName = DeviceName;
  this.device;
  this.Online = false;
};

Further, other variables required for driver work will be added to the section of variables.

Initalization of the Device

Initalization is the main function of the class. All device listeners, events and functions will be
written in it.

Drivers differ by their names so during initalization of class instances it is necessary to assign each
instance to its base driver from Project Device Panel by its name. So the first thing to be done is to



assign the driver class to the base driver created in Project Device Panel.

In order to do this use the this.device = IR.GetDevice(this.DriverName); method where the
name of the device indicated at the instance creation is set. The result is written in the this.device
variable.

this.device – the variable storing the driver identifier received by indicated name●

this.DriverName – the variable storing the name of the base driver indicated by the user●

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initalization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; //Receiving the link to the object for its using inside
the function
  }
};

Online / Offline Device Events
Online event – the device is on and in the network.●

Offline event – the device is off or for any reason there is no connection with it.●

These events exist to have the possibility to check if the device is launched or not (if the session of
connection to the controlled equipment is opened).

In the initial state that.Online = false, which means that the device is offline. But after that the
connection starts and the that.Online status changes to that.Online = true. If the device is offline
(the connection is not established), it is impossible to send commands to it.

Add listeners for the Online event in the initalization() function:

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device



{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function

    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that
the device is Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);
  }
};

Listener of Feedback
iRidium Script</b> has the IR.EVENT_RECEIVE_TEXT</b> event which is activated
when the device sends data to the application.

The data can be received by sending the text variable for this event to the listener in the function.
Then these data can be analyzed and the required information can be extracted - parser analyzes



and extracts data.

Let us add a listener for the IR.EVENT_RECEIVE_TEXT event in the initalization() function:

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function
    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that
the device is
Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Receive Text



    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_RECEIVE_TEXT,that.device, function(text)
    {
      IR.Log("receive = "+ text);  // Output the received data in the log
    });

Parser (Handler of Incoming Data)

The task of ‘‘‘parser’’’ is to extract the required information from the received data and store it for
its further output in the application.

Java Script provides several functions for data extracting and search in string variables:

.indexOf()●

.lastIndexOf()●

.search()●

.slice()●

Parser is written in the listener for the IR.EVENT_RECEIVE_TEXT event. In special cases it is
written in a separate function but it still can be launched only inside the listener.

Marantz SR7007 can send the string consisting of the command name and its state. The first two
symbols are the command, for example PW. The rest part is the state, for example ON or OFF.

Searching for all command variants of is performed by the ‘‘‘Switch’’’ function. When you found the
command it is required to store its state in the corresponding variable inside the object and in the
variable of the Feedback section(the variables are created manually in the project tree and their
names have to be unique).

Tell the this.PowerStatus variable in the section of variables●

Store the received state in the variable in the case "PW" section inside the parser.●

Create the Power variable in Project Device Panel, the Feedback section.●

Copy the received state in the Power variable with the help of the●

IR.SetVariable("Drivers."+that.DriverName+".Power", answer); command.

http://javascript.ru/String/indexOf
http://javascript.ru/String/lastindexOf
http://javascript.ru/String/search
http://javascript.ru/String/slice


var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  this.PowerStatus; // It will store the state of the Power command

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function
    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)

http://wiki2.iridiummobile.net/File:SDK_5.png


    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that
the device is Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Receive Text
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_RECEIVE_TEXT,that.device, function(text)
    {
      IR.Log("receive = "+ text);  // Output the received data in the log

      // Parser
      var cmd = text.slice(0,2); // Cut out the first two symbols – the
command name – from the received data
      var answer = text.slice(2,text.length-1); // Cut out the rest – the
current state
      IR.Log("cmd = "+cmd); // Output the cutout command
      IR.Log("answer = "+answer); // Output the current state
      switch (cmd)
      {
        case "PW":
           that.PowerStatus = answer;
           /* Write the current state in the that.PowerStatus variable for
            *   storing the status inside the object */
           IR.SetVariable("Drivers."+that.DriverName+".Power", answer);
           // Write the current state in Feedback for outputting the state in
the application
           break;
      // This principle can be used for parsing all data received from
Marantz SR7007
      }
    });
   }
};



Listener of the Activated Channel

All commands – data for sending to the equipment have to differ by their names.

Add the Power command to Project Device Panel, the Commands section.

When at pressing on an item or otherwise some command is activated in the iRidium application,
the IR.EVENT_CHANNEL_SET event is activated. After assigning the listener for this event the
creator of the driver is enabled (depending on what command is activated) to form and send the
corresponding command to the device. The name of the activated command is stored in the name
variable which is sent together with the function to the listener of the IR.EVENT_CHANNEL_SET
event.

IR.AddListener(IR.EVENT_CHANNEL_SET,that.device,function(name)

When analyzing the documentation for Marantz SR7007 the conclusion was drawn that the
command is formed from two parts and nonprintable symbol.

In order to make the driver more flexible and easily upgradable we will form the command from
parts.
The basis for the command is the activated channel. The channel defines which properties are
possible for the command in this particular case. When activating the command the user is required
to indicate properties for the command to send the equipment data corresponding to the command.

For example, the user has Marantz SR7007 in Zone 1 and he/she needs to turn it on. In order to do
this it is required to:

http://wiki2.iridiummobile.net/File:SDK_6.png


Activate the channel - Power●

Indicate the first property - the zone name - Zone 1●

Indicate the second property – the command property - ON●

Properties for the command will be input in the variables of the Feedback section. So add the
following variables in the Feedback section of Project Device Panel:

Input Action – it will be used to input a command property, for example ON●

Input Zone – it will be used to input the zone name, for example - Zone 1●

As an example of sending properties, create an item in GUI Editor.●

Drag the existing channel Power to the item. When pressing on the item the●

IR.EVENT_CHANNEL_SET event is activated and the name of the channel which activated the
present event will be known in the script.

http://wiki2.iridiummobile.net/File:SDK_7.png


Select the created item and go to the Object Properties panel●

Open the Programming tab. Here you can see the channel dragged by you to the item. It is●

http://wiki2.iridiummobile.net/File:SDK_20.png
http://wiki2.iridiummobile.net/File:SDK_21.png


added to the Press event. Open the Macros windows for the Press event.

In the Commands column from the Send To Token section select Send Text and drag in the●

Macros column.

http://wiki2.iridiummobile.net/File:SDK_22.png


In the appeared window in the Text field input the first property for the command - the zone●

name, in our case it is Zone1. In the Token field select the variable created in the Feedback
section - InputZone.

http://wiki2.iridiummobile.net/File:SDK_23.png
http://wiki2.iridiummobile.net/File:SDK_24.png


Drag one more macros Send Text and in the Text field input the second property - ON. In the●

Token field select the variables created in the Feedback section - Input Action.

With the help of the Send Text macro you can send any properties to variables in the Feedback
section.

http://wiki2.iridiummobile.net/File:SDK_25.png


To receive values from variables in the Feedback section there is a command
IR.GetVariable("Drivers."+that.DriverName+".Variable name");

To store and use the received data in the driver input in the Feedback section, add the following
variables in the section of variables:

this.param1 – this variable will store data input by the user in Feedback - Input Action●

this.param2 – this variable will store data input by the user in Feedback - Input Zone●

this.Msg = "" – this variable will store the string to be sent to the device●

this.error = false – the flag variable. If the param1 ore param2 properties are set incorrectly,●

then error will be true and nothing will be sent to the device. If all properties are set correctly -
error will be false and the command from the this.Msg variable will be sent to the device:

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  this.param1; // Parameter storing the zone name
  this.param2; // Command parameter
  this.Msg = ""; // Variable storing the command for sending to the device

http://wiki2.iridiummobile.net/File:SDK_26.png


  this.error = false; // Error flag

  this.PowerStatus; // It will store the state of the Power command

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function

    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that
the device is Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Receive Text
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_RECEIVE_TEXT,that.device, function(text)
    {
      IR.Log("receive = "+ text);  // Output the received data in the log

      // Parser
      var cmd = text.slice(0,2); // Cut out the first two symbols – the
command name – from the received data
      var answer = text.slice(2,text.length-1); // Cut out the rest – the
current state      IR.Log("cmd = "+cmd); // Output the cutout command
      IR.Log("answer = "+answer); // Output the current state



      switch (cmd)
      {
        case "PW":
           that.PowerStatus = answer;
           /* Write the current state in the that.PowerStatus variable for
            *   storing the status inside the object */
           IR.SetVariable("Drivers."+that.DriverName+".Power", answer);
           // Write the current state in Feedback for outputting the state in
the application
           break;
      // This principle can be used for parsing all data received from
Marantz SR7007
      }
    });
    //-------------------------------------------------------
    // Channel Set
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_CHANNEL_SET,that.device,function(name)
    {
       that.Msg = ""; // Clear the command for sending
       that.error = false; // Set the error flag to false
       that.param1 = IR.GetVariable("Drivers."+that.DriverName+".InputZone");
       // Get the zone name
       that.param2 =
IR.GetVariable("Drivers."+that.DriverName+".InputAction");
       // Get the command property
       switch(name) // Search for the channel name
       {
         case "Power":
          Power(name,that.param1,that.param2)
          // The Power  function will form the command for the device and
send it
          // The name of the activated channel , zone name and command
property are sent to it
         break;
       };
    });
   }
};

Functions of Sending Commands to Devices

As an example of a function off sending commands to the device we will use the Power
(name,that.param1,that.param2) function. It has to:

form a command●

send the command●

if the input parameters are wrong – output the error message in the log●

The Power functions receives three variables which will be the basis for command forming:

name – a channel name●



that.param1 – a zone name●

that.param2 – a command property●

For the Power command the Marantz SR7007 device supports three zones - Zone1, Zone2,
Zone3 and the common zone - System.

Depending on the zone number indicated in the Input Zone variable the function has to form a
command in the that.Msg variable with parameter ZM for Zone1, Z2 for Zone2 and PW for System.
If something else is indicated the function shows that there is no such zone.

The same with the command parameter: if the user indicated the On parameter – the function
should add to the that.Msg variable - ON, if the user indicated Off – it should add OFF, in other
cases it should output the error in the log.

After adding the zone name and the command parameter the command for Marantz SR7007 should
end with <CR>, that is why we will add <CR> (the string end) in the that.Msg variable.

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  this.param1; // Parameter storing the zone name
  this.param2; // Command parameter
  this.Msg = ""; // Variable storing the command for sending to the device
  this.error = false; // Error flag

  this.PowerStatus; // It will store the state of the Power command

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of
the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function
    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that



the device is Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Receive Text
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_RECEIVE_TEXT,that.device, function(text)
    {
      IR.Log("receive = "+ text);  // Output the received data in the log

      // Parser
      var cmd = text.slice(0,2); // Cut out the first two symbols – the
command name – from the received data
      var answer = text.slice(2,text.length-1); // Cut out the rest – the
current state      IR.Log("cmd = "+cmd); // Output the cutout command
      IR.Log("answer = "+answer); // Output the current state
      switch (cmd)
      {
        case "PW":
           that.PowerStatus = answer;
           /* Write the current state in the that.PowerStatus variable for
            *   storing the status inside the object */
           IR.SetVariable("Drivers."+that.DriverName+".Power", answer);
           // Write the current state in Feedback for outputting the state in
the application
           break;
      // This principle can be used for parsing all data received from
Marantz SR7007
      }
    });
    //-------------------------------------------------------
    // Channel Set
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_CHANNEL_SET,that.device,function(name)
    {
       that.Msg = ""; // Clear the command for sending
       that.error = false; // Set the error flag to false
       that.param1 = IR.GetVariable("Drivers."+that.DriverName+".InputZone");



       // Get the zone name
       that.param2 =
IR.GetVariable("Drivers."+that.DriverName+".InputAction");
       // Get the command property
       switch(name) // Search for the channel name
       {
         case "Power":
          Power(name,that.param1,that.param2)
          // The Power  function will form the command for the device and
send it
          // The name of the activated channel , zone name and command
property are sent to it
         break;
    };
    });

    //-------------------------------------------------------
    // Command Power
    //-------------------------------------------------------
    function Power(type,zone,action) // The Power function
    {
       switch(that.param1) // Search for the zone
          {
            case "Zone1":
              that.Msg+="ZM"; //Adding the zone name to the command for
sending
            break;
            case "Zone2":
              that.Msg+="Z2";
            break;
            case "Zone3":
              that.Msg+="Z3";
            break;
            case "System":
              that.Msg+="PW";
            break;
            default: //If the zone is not found – to output the error
               IR.Log("error in parameter 1: There are no zone with that
number");
               that.error = true; // Set the true flag for error – it will
stop the command sending
            break;
          };
          that.Msg+=""
          switch(that.param2) // Search for the parameter
          {
            case "On":
              that.Msg+="ON" // Adding the parameter
            break;
            case "Off":
              that.Msg+="OFF"



            break;
            default: // If the parameter is not correct –output the error
   IR.Log("error in parameter 2: you can't use "+that.param2+" with "+type);
               that.error = true;
            break;
          };
          that.Msg+="<CR>"; // Add the symbol of the string end
          if (that.error == false) // If there are no errors – send the
command to the device
              that.device.Send([that.msg]);
    };
   }
};

Public Functions of the Driver

Public functions when working with iRidium Script are the functions available to the user. We added
the Power function inside the driver class: it sends commands to the device but it works correctly
only when the channel is activated. The user who will use the driver should not use this function
outside the class. So this function is not public.

The initialization function is the main function of the class and it is necessary to perfom it after
creating the instance to activate the driver functions. Let us make it public. Below the initialization
function add this.Init = initialization. After creating of an instance it will enable you to activate
the initialization function with the help of .Init:

var Marantz_sr7007_main = function() // Class of drivers for the Marantz
SR7007 device
{
  //-------------------------------------------------------
  // Driver Data
  //-------------------------------------------------------
  this.DriverName;
  this.device;
  this.Online = false;

  this.param1; // Parameter storing the zone name
  this.param2; // Command parameter
  this.Msg = ""; // Variable storing the command for sending to the device
  this.error = false; // Error flag

  this.PowerStatus; // It will store the state of the Power command

  //-------------------------------------------------------
  // Device Initialization
  //-------------------------------------------------------
  function initialization() // Initialization method of the class instance
  {
    this.device= IR.GetDevice(this.DriverName); // Defining the indicator of



the base driver by its name

    var that = this; // Receiving the link to the object for its using inside
the function
    //-------------------------------------------------------
    // Device Online
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_ONLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Online"); // Write to the log that
the device is Online
      that.Online = true; // Assign the true value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Device Offline
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_OFFLINE, that.DEVICE, function(text)
    {
      IR.Log(that.DriverName+" DEVICE is Offline"); // Write to the log that
the device is Offline
      that.Online = false; // Assign the false value to the that.Online
variable
    }, that);

    //-------------------------------------------------------
    // Receive Text
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_RECEIVE_TEXT,that.device, function(text)
    {
      IR.Log("receive = "+ text);  // Output the received data in the log

      // Parser
      var cmd = text.slice(0,2); // Cut out the first two symbols – the
command name – from the received data
      var answer = text.slice(2,text.length-1); // Cut out the rest – the
current state      IR.Log("cmd = "+cmd); // Output the cutout command
      IR.Log("answer = "+answer); // Output the current state
      switch (cmd)
      {
        case "PW":
           that.PowerStatus = answer;
           /* Write the current state in the that.PowerStatus variable for
            *   storing the status inside the object */
           IR.SetVariable("Drivers."+that.DriverName+".Power", answer);
           // Write the current state in Feedback for outputting the state in
the application
           break;
      // This principle can be used for parsing all data received from
Marantz SR7007



      }
    });
    //-------------------------------------------------------
    // Channel Set
    //-------------------------------------------------------
    IR.AddListener(IR.EVENT_CHANNEL_SET,that.device,function(name)
    {
       that.Msg = ""; // Clear the command for sending
       that.error = false; // Set the error flag to false
       that.param1 = IR.GetVariable("Drivers."+that.DriverName+".InputZone");
       // Get the zone name
       that.param2 =
IR.GetVariable("Drivers."+that.DriverName+".InputAction");
       // Get the command property
       switch(name) // Search for the channel name
       {
         case "Power":
          Power(name,that.param1,that.param2)
          // The Power  function will form the command for the device and
send it
          // The name of the activated channel , zone name and command
property are sent to it
         break;
    };
    });

    //-------------------------------------------------------
    // Command Power
    //-------------------------------------------------------
    function Power(type,zone,action) // The Power function
    {
       switch(that.param1) // Search for the zone
          {
            case "Zone1":
              that.Msg+="ZM"; //Adding the zone name to the command for
sending
            break;
            case "Zone2":
              that.Msg+="Z2";
            break;
            case "Zone3":
              that.Msg+="Z3";
            break;
            case "System":
              that.Msg+="PW";
            break;
            default: //If the zone is not found – to output the error
               IR.Log("error in parameter 1: There are no zone with that
number");
               that.error = true; // Set the true flag for error – it will
stop the command sending



            break;
          };
          that.Msg+=""
          switch(that.param2) // Search for the parameter
          {
            case "On":
              that.Msg+="ON" // Adding the parameter
            break;
            case "Off":
              that.Msg+="OFF"
            break;
            default: // If the parameter is not correct –output the error
   IR.Log("error in parameter 2: you can't use "+that.param2+" with "+type);
               that.error = true;
            break;
          };
          that.Msg+="<CR>"; // Add the symbol of the string end
          if (that.error == false) // If there are no errors – send the
command to the device
              that.device.Send([that.msg]);

    };
   }

   //-------------------------------------------------------
   // Public
   //-------------------------------------------------------
   this.Init = initialization; // Make the initialization function public
};

Creation of Driver Instances

After the driver class is written you can create an instance. The instance is created below the
written class or in another module:

var myMarantz = new Marantz_sr7007_main("Marantz SR7007"); // Creation of the
driver instance

After creating of the instance activate the public function of initialization.

var myMarantz = new Marantz_sr7007_main("Marantz SR7007"); // Creation of the
driver instance
myMarantz.Init();

After initialization you can launch the project for debugging and testing the driver.



Adding the Driver in Device Base

When the driver is ready for its use in other projects it is necessary to add it in Device Base:

Open the Device tab●

Open DB Editor●

Press on New Database●

Indicate the base name, in our example it is Marantz.db●

Now your device base Marantz is created.

http://wiki2.iridiummobile.net/File:SDK_8.png


Select your base from the list●

There are categories in device base to orientate easier, in our case Marantz is a reciever.

http://wiki2.iridiummobile.net/File:SDK_9.png
http://wiki2.iridiummobile.net/File:SDK_10.png


Press on Add Category●

Indicate the name of the device category, in our case Marantz Receiver●

Select the category●

Press on Add Device●

Select Add Custom Device●

Select the device type, in our case it is TCP - Add TCP Device●

Indicate the device name, in our case Marantz SR7007●

http://wiki2.iridiummobile.net/File:SDK_15.png


Press on the JS button - JS Editor. For DB Editor (script editor of the global data base) there is a●

separate JS Editor, that is why when you open it your script will not be there.
Create a new script module in it with the same name as in your project●

Copy your script of the driver in the new module●

http://wiki2.iridiummobile.net/File:SDK_11.png


Go to the General tab●

In the Script field select the module you added●

In the Type field select the type of input, in our case it is TCP●

The Host and Port fields can be set by default, Marantz works with port 23 by default●

http://wiki2.iridiummobile.net/File:SDK_12.png


Go to the Commands & Feedback tab●

Copy your commands Commands from the project●

Copy your Feedbacks from the project●

http://wiki2.iridiummobile.net/File:SDK_13.png
http://wiki2.iridiummobile.net/File:SDK_14.png


Device outputs are indicated in the Outputs tab similarly to Commands and Feedbacks. At that
adding of the driver in Device Base is completed.

API for Working with Drivers

Functions
IR.CreateDevice Creating a driver
Connect Connecting to a device
Disconnect Disconnecting from a device
IR.GetDevice Referring to a device
Set Setting up a value in the device channel
Send Sending a command to a device
InvokeAction Sending a command to an UPNP device
Subscribe Subscribing to UPNP events
UnSubscribe Unsubscribing from UPNP events
HtmlDecode Substitution of reserved Html symbols
JSON.Stringify Converting a JSON object to a string
JSON.Parse Converting a string to a JSON object
new XML Creating an XML object
XML.ToString Converting an XML object to a string

Events
EVENT_RECEIVE_DATA Receiving data from a device in the bite format
EVENT_RECEIVE_TEXT Receiving a string from a device
EVENT_RECEIVE_EVENT Receiving an event (UPNP Event)from a device
EVENT_ONLINE Connection with a device is established
EVENT_OFFLINE Connection with a device is lost
EVENT_TAG_CHANGE Changing a tag value
EVENT_DEVICE_FOUND Finding an UPnP device

Download the example of the project

http://wiki2.iridiummobile.net/index.php?title=Drivers_API#IR.CreateDevice
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#Connect
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#Disconnect
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#IR.GetDevice
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#Set
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#Send
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#InvokeAction
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#Subscribe
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#UnSubscribe
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#HtmlDecode
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#JSON.Stringify
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#JSON.Parse
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#new_XML
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#XML.ToString
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_RECEIVE_DATA
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_RECEIVE_TEXT
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_RECEIVE_EVENT
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_ONLINE
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_OFFLINE
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_TAG_CHANGE
http://wiki2.iridiummobile.net/index.php?title=Drivers_API#EVENT_DEVICE_FOUND
https://www.dropbox.com/s/rc40tduy80om26q/MainMoranz.irpz

