
Contents

1 Tools for Working with Controlled Equipment●

2 Adding New Devices●

2.1 Commands❍

2.2 Feedback❍

3 Tokens – Variables of the Project Device Tree●

3.1 System Tokens❍

3.2 Project Tokens❍

3.3 Driver Tokens❍

4 Settings for Connection to Equipment●

5 Creating Commands and Status Channels●

6 Relations between Commands, Channels and the Project Graphic Part●

7 Macros for Equipment●

8 Displaying Status of Variables on Items●

9 Notifications about System Events●

You can find more detailed information about work with various drivers supported by
iRidium in the «Instructions for Controlling Equipment» section of the iRidium Wiki
information system.

After finishing the graphic part of the project it is required to create, set up and relate to the
interface the driver part of your iRidium project. The driver part of the project includes information
about connection to the controlled equipment and settings for communication with the equipment
represented by commands and status channels placed in one tree.

Tools for Working with Controlled Equipment
You can set up the project driver part in the “Device Panel”, “Project Device Panel” Editor tabs
and in the “Properties” tab.

Device Panel – the iRidium data base of all iRidium supported native and script drivers and also
devices and commands which help to control various automation via TCP/IP, UDP, RS232, IR, HTTP.

Project Device Panel – contains devices you need to control in the particular iRidium project,
tokens (global variables) and system variables for receiving data from the control panel without
involving the controlled equipment.

Properties – the tab of settings for connection to the controlled equipment, commands and channels
of the controlled equipment.

Drivers are added to the project tree from iRidium Device Base by the Drag&Drop method. When a
driver is added you can set up settings of connection to the equipment to be communicated by the
driver. After the connection setting set up commands and status channels which define methods of
communication with the equipment. The commands and channels are assigned to graphic items for
activation of data sending or they can be activated by scripts.

#Tokens_.E2.80.93_Variables_of_the_Project_Device_Tree
#Tokens_.E2.80.93_Variables_of_the_Project_Device_Tree
#Tokens_.E2.80.93_Variables_of_the_Project_Device_Tree
#Relations_between_Commands.2C_Channels_and_the_Project_Graphic_Part
#Relations_between_Commands.2C_Channels_and_the_Project_Graphic_Part
#Relations_between_Commands.2C_Channels_and_the_Project_Graphic_Part
http://wiki2.iridiummobile.net/Main_Page#Instructions_for_Controlling_Equipment
http://wiki2.iridiummobile.net/IRidium_Script_API

Adding New Devices
iRidium Device Base contains information about all native and script iRidium drivers which enable
you to control various automation equipment, Audio/Video systems, etc. To use a native driver in
your project drag in from iRidium Device Base to the Drivers category of the Project Device Panel
tree:

Each device has three types of channels grouped in device folders:

Tokens●

Commands●

Feedback●

Commands

Commands - commands formed with the help of the driver native part or manually with script
drivers. They are sent to the controlled equipment.

Feedback

http://wiki2.iridiummobile.net/Main_Page#Supported_Equipment
http://wiki2.iridiummobile.net/File:Editor_add_custom_driver.png
http://wiki2.iridiummobile.net/File:GUI_Descr_Commands.png

Feedback - variables for receiving and storing data received from controlled equipment

↑ Back

Tokens – Variables of the Project Device Tree
Token is a special type of variables in the iRidium project device tree which does not refer directly
to the controlled equipment.

There are 3 types of tokens:

System Tokens – system variables. They can only read data and receive various parameters of●

controlled devices: system time, battery status, etc. System Tokens

Project Tokens – project variables. They can read and write data. You can write any value or text●

from drivers or items in a token and then use it in the project. Tokens are not cleared at the start
of the project if you do not mark the Clear Token, box which is in the System tab of Project
Properties.

Driver Tokens – driver variables. They can only read data and receive various parameters of the●

driver: the connection status, host and port of the controlled driver, etc.

System Tokens

System Tokens are system variables located in Project Device Panel. They receive values of OS
parameters and the device the project runs on.

A system token can be assigned to any graphic item of the interface and the information received
from the token will be output in the interface. You cannot write values from the interface in the
system token as only the system can enter data to the token.

You can find more information about system tokens and their activation from
scripts in the article:
System Tokens

http://wiki2.iridiummobile.net/File:GUI_Descr_Feedbacks.png
http://wiki2.iridiummobile.net/System_Tokens
http://wiki2.iridiummobile.net/System_Tokens
http://wiki2.iridiummobile.net/System_Tokens
http://wiki2.iridiummobile.net/System_Tokens

↑ Back

Project Tokens

Project Tokens are project variables. They can store data which are available for reading and
writing. Writing of data to tokens and reading of data can be performed by graphic items, drivers or
scripts.

Token are stored in the project device tree (Project Device Panel)●

You can write numbers or strings to tokens (DEC or ASCII).●

Tokens can be created, removed, copied, sorted and grouped in folders.●

Data in tokens can be saved (or might not be saved) after closing the iRidium application.●

You can write data to tokens with the help of commands from items, drivers or iRidium Scripts●

http://wiki2.iridiummobile.net/File:SystemTokensGUIusing.png
http://wiki2.iridiummobile.net/File:Tokens_1.png
http://wiki2.iridiummobile.net/IRidium_Script_API#Tokens_API

You can write data to Project Tokens with the help of the macro group Send to Token in Macros
Editor of graphic items

Send Number – write a decimal number in the token (the DEC format)●

Send Text – write text in the token (the ASCII format)●

Send Token – write data taken from graphic item properties in the token (Value, coordinates, size,●

etc. – variable values defined by the object properties)

You can read data from Project Tokens by dragging Tokens on graphic items:

In Text – writing the token value in the item Text property. The data will be displayed on the item●

depending on their type (a string or a number).
In Value - writing the token value in the item Value property. The graphic item will take the state●

(beginning with zero) depending on the number the token has. In this case the token is required to
have a number.

http://wiki2.iridiummobile.net/Creating_the_Graphic_Part_of_iRidium_Projects#Macros_.28Macros_Editor.29
http://wiki2.iridiummobile.net/Creating_the_Graphic_Part_of_iRidium_Projects#Macros_.28Macros_Editor.29
http://wiki2.iridiummobile.net/File:Tokens_3.png
http://wiki2.iridiummobile.net/File:Tokens_6.png

If you write the template of value output $V in the item Text property, the token value will be
also displayed on the item.

More – writing the token value in the random property of the graphic item selected by the user. In●

this case the token is required to have a number.

For example, the value of the Menu project token has to be written in the item Opacity
property:

Project Tokens can store data after closing the iRidium application.

If it is required for Project Tokens to cear their values after closing the application, go to
Project / Project Properties / System and mark the Clear Token property.

Typical tasks:

relations between buttons without using drivers (equipment) or scritps●

creation of the Radio Buttons menu●

the project demo mode (commands and feedback channels are not assigned to real equipment)●

storing useful data between project launches●

Example: Setting up project navigation menu using Radio Buttons

see the example

Example of creating the navigation menu with the help of Project Tokens (communication of Buttons
will be performed as follows: only one of the items can be active at a time):

Create three graphic items and set up the following properties in the Programming tab of the●

Object Properties panel:

http://wiki2.iridiummobile.net/Creating_the_Graphic_Part_of_iRidium_Projects#General
http://wiki2.iridiummobile.net/File:Tokens_7.png

Create the Menu token and drag it to the graphic item selecting In Value.●

For each graphic item create the Send Number macros writing the sequence number of the●

graphic item (1, 2, 3) in the Menu token.

http://wiki2.iridiummobile.net/File:Tokens_8.png
http://wiki2.iridiummobile.net/File:Tokens_9.png

Download:
Example of using Project Tokens for Windows, iPhone, iPad >>

↑ Back

Driver Tokens

Driver Tokens – global variables storing general properties of the controlled equipment. These
properties can be read only not changed. To use a token drag it to the graphic item as a feedback
channel (the token value can be output in the item text field or it can be used to change the item

http://wiki2.iridiummobile.net/File:Tokens_10.png
https://s3.amazonaws.com/iRidiumWiki2.0/iRidiumTransfer/TokensSample.irpz
https://s3.amazonaws.com/iRidiumWiki2.0/iRidiumTransfer/TokensSample.irpz

state)

Online a state of connection to the controlled system (Online/Offline = 1/0)
Status the status of connection to the system (Offline/Connect/Online/Disconnect = 0...3)
Host a domain name of the remote system
HostPort a port of the remote system iRidium App is connected to
IP an IP-address of Control Panel
HostIP an IP-address of the remote system iRidium App is connected to
Port a local Client port which the connection to the remote device is established through

↑ Back

Settings for Connection to Equipment

When the driver is added it is required to select it in the device tree and go to the Properties tab
which contains settings of tree components. Here you indicate the settings for connection to the
controlled equipment with the help of the driver:

http://wiki2.iridiummobile.net/File:GUI_Descr_Tokens.png
http://wiki2.iridiummobile.net/IRidium_App
http://wiki2.iridiummobile.net/File:Editor_project_device_panel_my_device_properties.png

The Properties tab contains settings for local and external connection to the control equipment. In
other words, you can set up properties of connection to the equipment both when the control device
is in one IP-subnetwork with the automation object and when the equipment is controlled via the
Internet:

Name a name of the controlled device (at random)
Driver Type a type of the driver which helps you to control the device (unchanged)

Local Connection a section for setting connection to the equipment in the local network of the
automation object

↑ Back

Creating Commands and Status Channels
Command and status channels serve for defining ways of communication to the controlled
equipment on the basis of a standard driver. You can create an unlimited number of commands and
channels for one device in the project. Usually the number of commands and channels is defined by
the number of controlled equipment units, the number of commands it is required to send and the
number of units which status should be displayed in the iRidium project.

To create commands use tools of Project Device Panel which allow you not only to create new
commands or channels but also to import data from the project file or scan the network (for some
equipment types). There are the following ways of creating commands and channels when working
with various iRidium drivers:

1. Creating commands and channels manually

You can create a command or status channel with the “Add Command” tool of Project Device
Panel:

2. Importing data from projects

If iRidium supports data import from configuration projects controller you need to communicate
with, you can add all controlled units from controller configuration project to your iRidium project.

http://wiki2.iridiummobile.net/File:Editor_project_device_panel_add_command.png

At the moment iRidium supports data import from the following files:

iRidium Project (*.IRP, *.IRPZ) – import of devices from iRidium projects●

ETS Project (*.pr3, *.pr4, *.pr5, *.knxproj, *.csv) – import of group addresses from ETS projects●

(for KNX)
Simpl project (*.smw) – import of joins from Crestron projects●

3. Scanning the local network for devices

There is a toll for scanning the local network of the automation object for some types of equipment.
It allows you to find devices responded to iRidium by a particular protocol and add them to the
Project Device Panel tree. These devices can have preset commands and channels, connection
settings and infrastructure including the object network.

At the moment iRidium supports scanning for the following types of devices in the local network:

HDL-BUS Pro Net (UDP) – equipment using the HDL-BUS Pro protocol●

Lutron (UDP) – equipment using the Lutron protocol●

DuoTecno (TCP) – equipment using the DuoTecno protocol●

↑ Back

Relations between Commands, Channels and the Project

http://wiki2.iridiummobile.net/File:Editor_project_device_panel_import_add_drivers.png
http://wiki2.iridiummobile.net/File:Editor_project_device_panel_scan_add_drivers.png

Graphic Part
After setting up the equipment it is required to set up relations between the graphic and driver parts
of the iRidium project. The relations are set by assigning commands and channels to graphic items
of the iRidium project.

To assign a command or channel to a graphic item use the Drag&Drop method – drag the tree object
to the project graphic item. At that you will see the window where it is required to indicate the way
of communication between the item and the command. Settings of graphic items directly affect ways
of data sending, receiving and displaying.

For example, when working with the Custom (TCP) driver you can send data only from the command
information field (Send Command) but you can display data received from the equipment in several
ways (output it in the text field, change the item state).

Ways of data sending and processing are defined by the type of the controlled equipment driver.

↑ Back

Macros for Equipment
With the help of macros you can create sequences of data sending and scenarios for controlling
equipment. Macros can contain sequences of outgoing data, delays between data sending and
commands for graphic interfaces. Macros are created in the Programming tab of graphic items and
can be set for various interface and system events.

The window for macros creation is described in detail in the Macros (Macros Editor)section.

↑ Back

http://wiki2.iridiummobile.net/File:Editor_project_device_panel_send_command_feedback.png
http://wiki2.iridiummobile.net/Creating_the_Graphic_Part_of_iRidium_Projects#Macros_.28Macros_Editor.29
http://wiki2.iridiummobile.net/File:Editor_object_poperties_programming_macros_editor.png

Displaying Status of Variables on Items
There are two ways to output the value received from the controlled equipment on graphic items:

1. Output the received value in text as it is

If the value received from the controlled variable does not have to affect graphic item states and is
used for displaying in the graphic item text field only, select “In Text” when assigning the status
channel to the graphic item. It will enable the variable to affect only the text field without changing
the item state:

2. Process (convert) and output the received value in text

When it is required to process the received data, for example, display the absolute value in the
percentage terms, the templates of processing and outputting values on graphic items are used. To
use the templates the status channel should be assign to the graphic item “In Value”.

Template Function Template Function

$P Output of the current level value in
percentage $V Output of the current value

$L Output of the lower level value $H Output of the upper level value

$S Output of the current state number $A Output of the current value minus the
lower level value

$R Output of the level range (Upper level
value minus lower level value) $F1-5

Output of the value with a floating
point, number of symbols after a
point

$X Output of the current value in the hex
type $$ Output of the "dollar" symbol

A command (template) of incoming data processing and displaying is entered into the text field of a
graphic item and can be combined with other text or symbols (comments, units of measurement)

Download: Project with templates of value output on items (0.7 Mb)●

http://wiki2.iridiummobile.net/File:Editor_project_device_panel_send_feedback_in_text.png
https://s3.amazonaws.com/iRidiumWiki2.0/iRidiumGUIEditor/Output_templates.irpz

Templates are written in the item text field and are substituted by the converted data. You can use
any text blocks with templates too (measurement units, comments).

↑ Back

Notifications about System Events
Notification is a message, sound or action which informs a user about changes in the system.
Notifications work when "i2 Control" is opened on the control panel. They are set up with the help of
iRidium Script and can perform any actions and combinations of actions available in iRidium Script.

At the moment notifications for the background mode (minimized or closed application) are not
supported.

The iRidium notification system MUST NOT be used as the main one! iRidium
notifications about important and potentially dangerous situations can be used as an
auxiliary system to SMS, e-mail, notifications of the security system, etc.

As a notification you can:

show a text message on a graphic item;●

show a page or a popup with notification●

play a sound;●

activate a command for the controlled system automatically (turn on/off lights, switch off the radio●

when receiving an Intercom call, etc.)

With the help of iRidium Script you will be able to form the list of any conditions and actions which
you need to perform when the conditions are satisfied.

Example of use:

show the Intercom dialog window when receiving the incoming call;●

show the notification when the leakage sensor is activated.●

Setting up notifications:

http://wiki2.iridiummobile.net/File:Editor_project_device_panel_send_feedback_in_value.png
http://wiki2.iridiummobile.net/IRidium_Script_API
http://wiki2.iridiummobile.net/File:Attention.png

the script of notifications
in a ready iRidium project

1. Create a visualization project, set up its user interface and work with drivers (in accordance
with instructions for your equipment)

2. Create a script file (Ways of Creating and Launching Scripts)

3. Form handlers for driver events at which notifications should appear in the script file.

See a few examples of notifications below.

1. Notify about connection to equipment (Online)

Event:

successful connection with equipment ("My Driver"). “Equipment” – any driver of the
visualization project.

Action:

output text information about the event (for example, " System Online") and time of
event initiation in the 24-hour format ("System.Time.24") on the graphic item ("Item 1")
located on the page ("Page 1"). Change the color of the output text to green.

Example::

/***** online notification ****/
IR.AddListener(IR.EVENT_ONLINE, IR.GetDevice("My Driver"), function()
 {
 IR.GetItem("Page 1").GetItem("Item 1").Text =
IR.GetVariable("System.Time.24") + " System Online"; // notification
 IR.GetItem("Page 1").GetItem("Item 1").GetState(0).TextColor =
0x00FF00FF; // text color
 });

2. Notify about disconnecting from equipment (Offline)

Event:

http://wiki2.iridiummobile.net/File:NotifysInOpenedProject.png
http://wiki2.iridiummobile.net/File:NotifysInOpenedProject.png
http://wiki2.iridiummobile.net/Ways_of_Creating_and_Launching_Scripts

disconnection from the equipment ("My Driver"). “Equipment” - any driver of the
visualization project.

Action:

output text information about the event (for example, " System Offline") and time of
event initiation in the 24-hour format ("System.Time.24") on the graphic item ("Item 1")
located on the page ("Page 1"). Change the color of the output text to red.

Example::

/***** online notification ****/
IR.AddListener(IR.EVENT_OFFLINE, IR.GetDevice("My Driver"), function()
 {
 IR.GetItem("Page 1").GetItem("Item 1").Text =
IR.GetVariable("System.Time.24") + " System Offline"; // notification
 IR.GetItem("Page 1").GetItem("Item 1").GetState(0).TextColor =
0xFF0000FF; // text color
 });

3. Automatic opening of the popup when activating a channel

Event:

receiving values (1 and 2) from the channel ("Channel 10") of the driver ("My Driver").
“Equipment” - any driver of the visualization project.

Action:

1. When receiving 1 – open the popup ("Popup 1"), output event information (for
example, " Lamp in Garden broken") and time of event initiation in the 24-hour format
("System.Time.24") in the text field ("Item_Display") of the popup.
2. When receiving 2 - open the popup ("Popup 1"), output event information (for
example, " Lamp in Garden Response Failed. Please Check") and time of event initiation
in the 24-hour format ("System.Time.24") in the text field ("Item_Display") of the popup.

Example::

/***** event notification (Tag Change) ****/

var old_value1 = -1; // do not show notification if the previous state is
the same
var old_value2 = -1;

IR.AddListener(IR.EVENT_START, 0, function()
{

 IR.AddListener(IR.EVENT_TAG_CHANGE, IR.GetDevice("My Driver"),
function(name, value)
{
 if (name == 'Channel 10' && value == 1 && value != old_value1) // Check
the Value = 1 in Feedback "Channel 10"
 {
 IR.ShowPopup("Notify_danger");
 IR.GetItem("Popup 1").GetItem("Item_Display").Text =
IR.GetVariable("System.Time.24") + " Lamp in Garden broken";
 old_value1 = value;
 }
 else if (name == 'Channel 10' && value == 2 && value != old_value2)
// Check the feedback "Channel 10'"
 {
 IR.ShowPopup("Notify_important");
 IR.GetItem("Popup 1").GetItem("Item_Display").Text =
IR.GetVariable("System.Time.24") + " Lamp in Garden Response Failed. Please
Check";
 old_value2 = value;
 }
});

4. Play a sound at channel activation

Event:

receiving any value (1) from the channel ("Channel 11") of the driver ("My Driver").
“Equipment” - any driver of the visualization project.

Action:

1. When receiving 1 – play the notification sound and output event information (for
example, " Incoming Call") and time of event initiation in the 24-hour format
("System.Time.24") in the text field of the graphic item ("Item 5 ") on the ("Page 1").

Example::

/***** event notification (Tag Change) ****/
IR.AddListener(IR.EVENT_START, 0, function()
{
 IR.AddListener(IR.EVENT_TAG_CHANGE, IR.GetDevice("My Driver"),
function(name, value)
{
 if (name == 'Channel 11' && value == 1) // Check the Value = 1 in
Feedback "Channel 11"
 {
 IR.PlaySound('BEEP1.WAV',1,70); // Play Sound ('name',slot,volume)
 IR.GetItem("Page 1").GetItem("Item 5").Text =

IR.GetVariable("System.Time.24") + " Incoming Call";
 }
});

Download: example of notifications for KNX: simple notifications, the notification center

↑ Back

https://s3.amazonaws.com/iRidiumWiki2.0/Driver_KNX/KNX-wiki-1024_NOTIFY.irpz
https://s3.amazonaws.com/iRidiumWiki2.0/Driver_KNX/KNX-wiki-1024_NOTIFY.irpz

